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Stochastic Differential Equations for Neuronal Behaviour

In this article we extend the recent work of Kallianpur and Wolpert
[5] modeling the behavior of neurons by means of stochastic
differential equations on the dual of a nuclear space. The
extensions will cover nuclear spaces of a more general structure and
will apply to models described in terms of more general differential
operators. A second objective of our work is to present a
theoretical framework which will include the model recently proposed
and heuristically investigated by Wan & Tuckwell in [9]. We
illustrate our approach and its application by giving a rigorous
treatment of the Wan & Tuckwell model. But first we shall briefly
describe the neurophysiological context. For a more detailed account,
we:tefer to (5] and the references therein. In our description we

shall follow the introduction in [S].

A neuron is a cell whose principal function is to transmit
information along its considerable length, which often exceeds one
meter. "Information" is represented by changing amplitudes of
electrical 'voltage potentials across the cell wall. A quiescent
neuron will exhibit a resting potential of about 60 mV, the inside
more negative than the outside. Under certain circumstances the
voltage potential in the neuron dendrite will rise above a threshold

point at which positive feedback causes a pulse of up to 100 mV to

appear at the base of the dendrite; this pulse is transmitted rapidly
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along ihe body and down the axon of the cell until it reaches the
so—called "pre—synaptic terminals®" at the other end of the neuron.
Here the pulse causes tiny vesicles filled with chemicals called
"neurotransmitters®™ to empty into the narrow gaps between the
presynaptic terminals and the dentrites of other neurons. When these
chemicals diffuse across the gap and hit the neighboring neurons'’ ‘
dendrites, they may cause the voltage potential in these dentrites to

rise above a threshold point and initiate another pulse.

Let ¥(t,x) represent the difference between the voltage potential at
~time t at the location x € X (= surface of the neuron) and the
resting potential of about -60 mV. As time passes, § evolves due to
two separate causes:
(i) Diffusion and leaks: Depending on the nature of X, the
electrical properties of the cell wall may be approximated by
postulating a contraction semigroup {T,} on Lz(x{P) where I' is a
suitéble 6—finite measure on X. For example, if X = [0,b], core
conductor theory suggest the semigroup corresponding to the diffusion
equation
—:—i- = —8g, +\64§t (8,6 > 0)
with Neumann (or insulating) boundary conditions at both ends. In
neural material like heart muscle in which electrical signals can
travel more easily in some directions than in others, the Laplacian

should be replaced by a more general second—order elliptic operator.

(ii) Random fluctuations: Every now and then a burst of

................................................
..........
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neurotransmitter will hit some place or another on the membrane and
suddenly the membrane potential will jump up or down by a random
" "amount at a random time and location. It is believed that these
random jumps are quite small and quite frequent, making it reasonable
% to hope that they can be modeled by a Gaussian noise process; in any
. case the arrivals at distant locations or in disjoint time intervals
are believed to be aproximately independent, justifying their

modéling as a mixture of Poisson processes or as a generalised

Poisson process.

‘Taking into account these random fluctuations one arrives at the

following stochastic partial differential equation (SPDE) for :
’
dg(t,x) = A;(t,x)dt + th; §;= initial condition

Here A is a suitable partial differential operator in spatial
coord&nates and M, is an Lz-semimartingale. However, even for very
simple choices of A (e.g. A = I-A in two dimensions; see [8]) a
solution may exist only in the form of a generalized stochastic
process i.e. a process taking values in the dual of a space § of
"testfunctions®, The relevant space of testfunctions can usually not
be assumed to\be the Schwartz space of all infinitely differentiable
rapidly decreasing functions (see e.g. [5]) and therefore we shall
take § to be a general countably Hilbert nuclear space. The linear
SPDEs appropriate for this purpose have been investigated in [2]

where an existence and uniqueness result is given for equations

driven by a semimartingale on §’.




- In [S5] a restricted class of differential operators was considered;
namely those which generate a selfadjoint contraction semigroup whose
a - " resolvent has a power which is Hilbert-Schmidt. In this case there is
" " a canonical nuclear space upon which the SPDE has a very manageable
form. However, the structure of the nuclear space is completely
deé?mined by the operator A, and therefore we shall present general
results which are independent of the structure of § and which will

also permit a wider class of differential operators to be considered.

Kallianpur and Wolpert ([5]) used a Poisson process N(AxBx(0,t]) to
_represent the number of voltage pulses of size a € A arriving at

sites x € BC X (= surface of the neuron) at times prior to t.

Here, we adopt the point of view that, in practice, one can only
"average" over the sites. Therefore it seems more realistic to assume
that.the arrival sites are given by "generalized functions”
(diséributions) ]’2 e A §’, rather than by points x on the_ surface
of the neuron membrane X. As we shall see, this approach will also

offer the advantage of enlarging the class of possible models.

To pursue this idea let us consider a real rigged Hilbert space
s Hes P’ (see Gel’fand & Vilenkin (3] p 79 for definition). Let
8(§’) denote the Borel €—field on §’ and recall that B8(J’) is the

same whether we use the weakly or the strongly open sets in §' to

define it.

-To avoid possible confusion with inner products we shali adopt the

notation that for ¢ € § and ) € §’, NI$) will denote the value of




the functional I} evaluated at $.

- “Let A € a@') and ' let, for each n € H, un be a§—-finite positive

' measure on (RxA,8(R)x8(A)) satisfying:

The mapping: Q" : PxP »> R defi.ned by

Q" (,¥) = le/\ azl?[¢i]?[¢]un(dadr2) is continuous on §x9@.

Let N” be a Poisson random measure on
_(lx/\xlo,o:));S(l)xs(/\)xs(lo,m)) with intensity measure un(dad]?)dt

(a € R, ]‘2 € A, t € [0,0)) (Ssee e.g. Ikeda and Watanabe [4], page
42).

Let N"(dadnds) = N"(dadnds) - u"(dadr))ds and put
A
§"(¢f = f an(éIN"(dadNds); ¢ € §
t RxAx[0,t)2 1] ndsi: y
Let m" € §’, and define M) = tm"[$] + §n(¢)° bed
(4 t t ’ L]
Then, for each ¢ € §, ;(2(4;) is a real CADLAG semimartingale satisfying

ExD(12 = 201412 + a4, 4).

Since Q" is continuous on PxP, the Kernel theorem for nuclear spaces

(see Gel’fand & Vilenkin (3], page 74) yields the existence of

r(n) € W and C(n) > 0 such that
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- “We shall henceforth assume that the.same r and C will do for all

-----------------

n"1$12 + Q®(é,4) < Cin) | dfI2 v ¢ €3.

r(n)’

n € N, i.e. we suppose that there exists r, € B, C > 0 such that
(1) n"612 + Q24,4 < c||4~||;".,2 Vnew VY éed.
From Doob's Martingale inequality we deduce that, for any T > 0,

Esup (xDén2 c2ciar+ 21t ¢l2 Vnew véed
o<t<T 2
and therefore Theorem III.1.12 and Remark 7 of (2] yields the

existence of ¢ € M, q > r, (independent of n) and a ﬁ_q—valued

n

CADLAG Lz—semimartingale X, satisfying xﬁl#l = i2(¢) ¥ t>0 (a.s.) V¥

¢ € §. Let xP'T = (xP

t)telo,T]; T > 0.

Let m € §’ and let Q : §x§ - R be a continuous bilinear symmetric

!
functional satisfying

() mid1? + ad,d) < c||¢||f,2.

It can then be shown that there exists a §-valued process with
independent iﬁcrements and characteristic functional given by

exp( itm{$) ~ t/2Q(¢,$)). This was shown by V. Perez-Abreu [7] for
the case m=0 and a nuclear space of a special structure. The general
case may be deduced from theorem III.1l.12 in [2]. We shall henceforth
call W a §’-valued Wiener process with parameters m and Q.

It can be shown from (1) and (2) (See [2] theorem III.l.l12 and remark

7) that we may choose q > r, such that
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x*T e D(10,71,§_) P-a.s. VY nemW YV T>0and

., -

W e cco, 71,9 ) P-a.s. ¥V T>O.
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! . Let P,g denote the measure induced on D([0,T],§_ q) by x™7T and 1let Pp

denote the measure induced on C([O,Tl,i_q)c D([O,Tl,Lq) by wr.

% Let Qn,mn satisfy (l1). Then, for every T> 0, the family {Pg : n € W}
- is tight on D([o.'rl.i_qh
: PROOF':

By Mitoma, [6], theorem 5.3.2. and remark Rl, (page 996/7)it is
suffigient to show that
]

(a) v éed {x“'T[M : n € W is tight on D([0,T],R)

and
(b) 3k_>_\q:ve>ov,>>o3é>o=
I, < & => tsup  [xP141] > @ <p Vnew
- o<t<T

For part (a), by Billingsley (1] theorem 15.3 page 125, it is
sufficient to show that ¥ ¢ € §:




. n
(ai) vq>033>o.p(32;t>g | X, [$1] > a) < N} V nem

“(aii) we>0, N>073 $ec,m 3 n, € W:
n n n n
P{sup min{lxtM] - Xy l¢]|:|xt - X [¢1]) > e} < N V¥ n2n,
£ <tet, 1 2

and

n n
P(sup 8 [Xg(41 = X (91| 2 & < R ¥Ynan2n

s,te[o - °
~and
P(sup |xP1d) - x}1d1| > @ < ¥ n>n
s,te(r-6,7) ° ¢ R °

Fix $ € §, and let ) > 0, € > 0. Then,

\
)

! 1
P(sup Ix't‘wll > a) < — E(sup |x2[¢1|)2
telo,T] a tef(o,T]
2 -
< —3 E(sup (t?n"1$12 + Yglﬁz))
a te(o0,T]
2C
< = rn" 1412 + 4™ (4,40
a .
2 2 2
< =% + 4T) clléll; V neud (byl)
a 2

2
< 1 for a? > —(1r? + 4T)Cll¢ll,2,
2

Next, let D:=(t>0: t, £t <ty and t,-t, < 8). Then

------------------------------------------
...................

........................
.................................
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P(sup min(|XD(¢] — X7 [41],IXg (4] — X{Lé1[} 2 €}
1 2

teD

TS C V. OV SR T Y

% 2 g( sup min(|XP(o] - XP (1], (X2 (41 ~ x[ré1(n)?
' teD 1 2

< e 2 E( sup min{lx:[dbl - x‘g [Qllz,lxg (¢] ~ x‘éwllz)
tep 1 2

< €72 min(Esup |X2_¢ [$1]2,Esup |3 _¢ 1411%
tebD 1l teD 2
2 2 n 2 n 2
< —smin{sup ((t — t;)°m [$]1%) + Esup [¥, _, (611°,
e tep teD 1
sup ((t, - t)2mn[¢]2) + Esup lY: _t[¢]|2)
teD teD 2
2 2_n 2 n
e”

2
< —6% + shclel? w1 wy an
e 2

- 2 _
y <NV nenif &2 + 4dy < (2—c||4>||§ y“1L,
p e 2
Further,
P(sup X211 = xTé1| > &
s,telo,é) s t
< —1—E(sup X241 - x’“[ebl)2
= e? g,tero,d) S t
1 (2n.,.2 n 2 (2 2 .-
< 2082412 + 28Q" (4,401 < =82 + adicl ]l Vo>l
e? e? r,
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2
<snVvnemwit &2+ 4d ¢ (—é-2-c||¢||§2)"1.

N

" Similarly, ‘

P(sup X211 - xRl > @
s telT-4,T] %504 t

in

2¢72(8%u" 1412 + 48074, 4)) < 267282 4 sdiclel? v
2
2 2 2 -1
<NVnem if 6+48<<—2—c||¢|| ) "L,
€ T2

Hence (ai) and (aii) are satisfied for

82 + 4d < 2n e %412 »)™L, ana n, = 1. This proves (a).
2

(b): Fix ¢ € § and 1let en >o.
A
/

Then P(sup IxP141] > @ < € 2E(sup |x’t‘[4>1|)2
tefo,T] telo,T]

< € 2211412 + 4104, 4))

< € %212, amclél? < e 22r? + 4T)CII¢II§ (by (1))
\ 2

v 112 < 62 —-—;——nez
£ n>1if < = .
n = | q- 2(T“+4T)C

This completes the proof of Proposition I.0.

I.1. THEOREM:

............
...............................................

......
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Suppose that, in addition to assumption (1),

o

- (3) Q" (é,4) ——> Qé,d) V ¢ € §.
n->m

. (4) lim fu/\|a(1?[¢1)|3p“(dadrp =0 VY ¢ebd.

n->qo

(5) n(¢] == mld] V ¢ € [ B
n->a

Then, for any T > 0, we have

n

PR ==>
T now
PROOF':

T.

Fix T > 0. Let t; < t;, < ... < tg € (0,T) and §,,...,0; € § for

K

K e | fixed.
)

We must show that

(i) : (xgk[lllk])i,l converges in distribution to (Wtkwkl)ﬁ_l
‘ (ii) (P} : n € M} is tight on D(L0,T1,3_,).

(i): The log characteristic function of (X! (¥ Hi is:
—_— ty k® k=1

.........................
..........

---------
...................

.....
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: K
\ n
Clay,...ag) = [1 thkakm (9,1 +
k=

l o4

= j’g Jnx/\ (eiarz[r(s)l -1 - iat‘([?(s)l)u“(dadmas]

K
where F(8) := Z ‘kllo,t
k=1

o) (s)¢k,

K
while that of mtkwkl)k-l is

K
N A
.C(al,...ax) = [1 [ tkakmltkl " IO Q(F(s),F(s))ds |. Hence

k=1
K

|c (ayseeoag) = Clag,eeasag)| = |1 Z t,a, (@ 9,] — mi¥ D) +
k=1

®
1
T \" p,n — _(al -
Jo [Inx/\ L..3 (iaQ[F(S)l) T (dadQ) 2(Q (F(s),F(8))
i p-

Q(F(s),F(s)))] as| <

K
| Z tkak(mn[l’k] - oy D +
k=]l \
@
Jz Jlx/\ | Z (ia]?[F(s)])pIun(dad]?)ds +
p=3

Tl n
Io ;IQ (F(8),F(8)) — Q(F(s),F(s))|ds
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n T 3 n
<) tlaglimtte) + jo Jnx/\larz[r(s)ll u"(dadn)ds +
k=1
. T 1 n
jo -|Q " (F(s),F(8)) - Q(P(s),P(s))Ids
2
the first term tends to zero by (5). As for the second term, use (4)
to obtain
3 n
(6) lim |an(F(s)]|°u"(dadnN) =0 V¥ s e (0,T].
n>o frxn 127 n '
'Now, by definition of F(s)
\K_
|a]‘2[F(s)]| < /. Iallaklll‘(wkll ¥ s e [0,T].
k=]
*
Define a, := ay sign(a, N(Y,1). Then
)
: £ £
* ]
/. |a||ak||]?[¢k]| = |a] / akl’zl‘bkl = |a]’2[ A ak¢k]|
k=1 k=1 k=1
S0
‘ K
N\ L*
(7 Ia]?[F(s)ll < Ia]?[ /. ap )l Vv seloTl.
k=1
K
»
But a b, € ®, so an application of (4) gives
=)
T S e R S e s




' K
lim ]nx/\m?[ \ g;¢k1|3un(dad]?) =0 and thus

n>o &

- K

:texg !lx/\'a]?[ Z aitkllaun(dad]?) < .
k=]

But then T [o . lan(r(s)]|3u"(dadnds == 0

by (6), (7) and the DCT. Further,

Q" (F(s),F(8)) ——=> Q(F(s),F(s))
n->o

for each s € [0,T] by (3) and since Q and Q" satisfy (1) we have

L 2 e , P
.'.'.'.'.‘m voeoe

: 1Q"(F(s),F(s)) — Q(F(s),F(s)| < 2cfres) ]2 .
2
Moreover, Ig IIF(s)IIf, ds < o™ so the DCT gives
) 2

- ]'f, |Q"(F(8),F(8)) — Q(F(s),F(s))|ds ——=> 0
3 n->w
N concluding the proof of (i).

(ii) By (1) and Proposition 1.0 the family (Pg : né W} is tight
on D([o,'rl,ﬁ_q).

: j

—_———

Let A : § > § be a linear and continuous, and suppose that A and

x (T, : t > 0} satisfies:

Al There exists a strongly continuous semigroup [(Ty: £20) "




on H whose generator coincides with A on § and such that:
(a) T.8cd V >0

(b) 'rtb : P > @ is continuous in (§, ) W t > 0
(c) t > T.é is T -continuous for every ¢ € 3.

It is shown in [2] (Theorem III.1.5) that the SDE on §’

'
_dxt = A Xtdt + th: xc =Y,

where Y is a §’-valued random variable and M = ‘"t’tzo is a §’-valued

2

weak L“-gsemimartingale, i.e. a §’-valued process such that Mt[¢] is a

semimartingale with E(Mt[¢])2 < ® Yt>0 for each ¢€, has a unique
CADLAG solution on §’.

!
Moredver, the following result, which we restate for the convenience

of the reader, is proved ({2]), Theorem III.2.1):

1.2, THEOREM

Let M" and M be weak §’-valued semimartingales satisfying

(*) vroJag em Vnem: v, M e D([0,T1,3_ )
T
and
sup E sup ﬂM:'Tﬂf < .
nem  0<t<T 9y

Let Yn, Y be §'—va1ued random variables satisfying




A o

16

. 2 2
(*%) r, € m_: sub max(EfY*|_ ,EJYJ“__ } < oo.
3= °  nem 3 | 31

T T

Let T>0 and suppose that M"'" ==> M" on D([O,'l‘],ﬁ_‘:I ) as n>o
T

and that

Y? a=> Y as n9o®. Then there exists Pp € W, such that §n'T ==)> S‘T

on D([O,T],Lp ) as n>m, where

T
.'En'T and §T denote the unique CADLAG solutions to
df: - A'S:dt +aMg; §o- Y?,  ogt<T

respectively

!
a S.t ‘= A’ ?tdt + th; so = Y, 0<t<T.
Moreover, Theorem I.2 remains true if the spaces D([0,T], i_q ] and
T
p(lo,T], Lq )} are replaced by, c({0,T], § . 1, respectively C([O,T],
T

I_qu; see [2].

9y

Let §'n and Qo be §’-valued random variables, and let gn - (SZ)Q_O

denote the unique solution to the SDE on Q'

n n n n
dgt - A'stdt +d.; ¥,=§,

and let Q = (]'?t)tzo denote the unique solution to
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o]
dNy = A'Nedt + AW, N, = N

Semark 1

If the operator A is selfadjoint and dissipative (regarded as a
densely defined linear operator on H) with (I-A)-rl being a Hilbert-
Schmidt operator for some r; > 0, and if § is the nuclear space

generator by (I-A) (i.e. § = {f € H: ||(I-A)’:,||I?I <oV reR; see

[5]) then the solution may be expanded as a series

%2
- 3
Re = ) Nidy

i=1
(Converging uniformly on [0,T] in the §-q - topology (a.s.) for
everyAT >0 and q > r; + r,; where (’j' -\j); 0 < N\ < \2.5 «es with
)‘n > 0 as n > ®, is the eigensystem for A, and where ]’2% is the

one-dimensional Ornstein-Uhlenbeck process given by

: , 5
: an{ = -\y Ridt + aW [Py Ry = R°ipyl

[_ A similar expansion is possible for x: in this case. We refer to [5]

;. _ for details.

RBemark 2

Regardless of the structure of ¢ one can show that whenever A

satisfies Al, for every T > 0 there exists P 2 0 such that

n* e cuo,m1, $-py (a.s.)

--------------
................
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] *where C([0,1], §-PT) denotes the complete metric space of all

-continuous functions f: [0,T]) > §_p and where

| T
R°-:= (Mdeero,r] - :

d.d ZHEOREM

Suppose that, in addition to (1),

(8) Q" (b,d) ——=> Qd, ) VY e

n=>0

(9) lin fo . laQié1* @adm) =0 vV éed

n=>co

(10) d r e ¥: sup max{(E| ]‘?°||ir,E||§n||32} < o and

n
| £, = Qoonﬁ_rasn-)m.

\
I}

(11) n[$] ——=> ml$] V¥V ¢ e .
n-=>o

Then, for any T > 0 3p,1. e m:

'T =n=> 1T on D(10,T] )
gn n>wm n ' 'Lp'r

n,T _
where E ‘;t"te[o,'r] and

T
" = Meleero,r.

PROOF:
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(1), (8), (9) and (10) imply that X™'T ==a> W' on D([0,71,8_)

n-=>w
'_Er T > 0 by theorem I.1l. Moreover, (1) implies condition (*) Theorem
I.2 while (10) supplies the remaining assumption of Theorem I.2, from

which the conclusion is thérefo;e obtained.

Next, we shall give conditions under which the processes xT winn
converge weakly on D([O,T].Q_q) to a process X® constructed from a
Poisson random measure N on RxAx[0,m) in the same way as x? was
constructed from N". We shall then invoke theorem I.2 to give

n,T

sufficient conditions for the weak convergence °f‘f on

D([O.Tl.g_p ) to the solution to the SDE driven by X.
T

Let m € §’ and let p be a €~finite measure on (RxA,8(Rx8(A))

satisfying
]
(11a)  mwi$1? + Bddr < cldl? v oed
2

a1b)  foor |P2RIY) g sanigrjucaaan) < @

where

B(o,d) s= fo a’nierdu@adrn;: v 4 e 3.

Let N be a Poisson random measure on (RxAx[0,m),8(RxB8(A)x8({0,)))

with intensity measure u(dad]?)dt (a € R, I? e A, t > 0).

.......................................




P At S W A o S S i el IR R S R A T TR

20

Define

] §t(¢) = JRx/\x[O.T] a)’?[#](N(dad]’(ds) — u(dadnids); t> 0; éed,
and X, ($) = tnldl + Y, (4).

Since the r, required in (lla) is the same as that of (1), theorem
III1.1.12 (b) of [2] implies the existence of a Lq valued

semimartingale X = (Xp) sg satisfying X, (4] = X _($) (a.s.) for every

¢ € §. For each T > 0 let Ry denote the measure induced on

T

p([o,'r).i_q) by X* = (X.) . Then we have:

telo,T]
o4, THEOREM

Let m” and p“ satisfy (l). Let m,u satisfy (lla,b) and suppose that

\
! .
(12) fnx/\ (e} _ 3 — janre1ru"(daan)—-=>
n=>o

!nx/\(eia]"(W] - 1 - iaRiéhu(dadn) V ¢ € [

(13) n"($] —> m(d] V¥ ¢ e Q.

Then, for every T > 0, P,'r‘ ==> Ry a8 n > .




PROOF :

FiX T > 0. Since (1) is assumed to hold {P,‘i.l : n>1} is tight on

b([O,T],Lq) by Proposition I.0. Hence it suffices to show finite

dimensional convergence:

Leto_(_tl sooos tKSTand wkeg; k'l,o.o'Ko
Then the characteristic functions for (x:'TWl],...,xg'TWK]) and
1l K

(lewll"”'x'tr:xwxl) are, respectively,

Cn(al....,ax) = exp[i.m"[ 2_ tkakwk] +
k=1

ia]?[F(s)l

Sg ‘gx/\ (e -1- iaQ[F(s)])un(dad]’z)dsJ

and

\
i

!

C(al,...,ak) = exp[im[ Z tkaklvk] +
k=]

,'g ‘Rx/\ (eiafz[F(s)] -1- ia]’?[F(s)])u(dad]’z)ds

X'
where F(s) := \ a .l (s)P,. By (13) it is enough to show that
l_ k [O.tk] k
k=1

lim exp[ﬁ Lx/'\(e“’?[“s” -1 - iaQ[p(s)l)p“(dadQ)d{l =

n->aoo

e"PB: ng/\ (elaRIFE=T _y iar)lr(s)lu(daamd{l .




.....................................

I3 Now, F(s) is piecewise constant, i.e. there are 0 = s <...< sy = T

M
and ¢;,...4, € § such that

. -
:' ¢j if s e [sj-l'sj) j = 1,...," -1
> F(s) =
¢M if s € [sM—l ,T]
Hence
) elfaN(F(s)] _  _ ian(F(s)] =
; M—1 .
3 Nt 22 .
(e -1 - ianlé.Nn1 (s) +
- iant4,]
M
(e -1 - ianié, N1 (s)
Niewls, 1)
s0 ;

ia]’?[F(s)]

I
!

o~

jkx/\ (e - 1 - iaN(F(s))u"(dadN))ds =

M-1

[ uen

ial?Hbjl

o

-1 - 1a12[¢jl)p"(dadrp

ia]‘?wul
J ltsj_l'sj)(s) + le/\ (e -1

n
- ia)’?[&ul)u (dadr?)lls"_l'.”(s)]ds -




......................................
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M .
& ianuey) . ]
L—l ‘Rx/\ (e 1l 1a]’2[¢jl)u (dad]‘?)(sj sJ 1)
J=
(by (12)

M .
— X ianié,]

- Jél Inx/\ (e -1- ia]’)[d)j])p(dad]‘z)(s‘j - 85!

(Recall that gnx/\ ...u(dad]’z) is finite by (11b))

=S§ ij/\ (elaNIF(s)) _ , _ ian[F(s)])u(dadn)ds,

concluding the proof. )

L- .

E Lat §° be a §’—valued random variable and let §= (gt)t>0 denote
% the unique solution to the §’—valued SDE

!

df, = a'§.at + ax.; ¥ =§°
I,ﬁ. THEOREM

Let m” and u? satisfy (1), let m,u satisfy (lla,b) and suppose that
(12) and (13) hold. Suppose further that

2 op2
(14) Jd ren : sup max(E|T.[|<_,E] <.} < @
n gn r' 3 r

and that fn ==a> F° on §

n->o -t

Then, for any T > 0, J p, € N :




. " E—
s 50 8 4 3 2

===> 5§ on DULO,T1,_p ), where §° = (§)iqqq,n),

.-
PROOF :

Let T > 0. Recall that q > r, is such that the canonical injection
.r

2
¢’q

in Qq consisting of elements of §. Then note that

is Hilbert—Schmidt from Qq > §r2. Let (¢j : j € N} be a CONS

(e 0)
n,T,2 L yn,T 2
Esup [IX2°||<_ = E(sup (X, " [¢:,1)°) <

o<t<T  °© q 0<t<T # e’ [ =

‘® ®
E(‘T.sup (x:'T[¢jl)2) = E: Esup (i:[¢j])2 <
= 0<teT fo Oster
©
j=1 |
]
® -
Y 2C(T2v4'1‘)||¢j||§ = 2C(T2v4T)||£q2||§S V ne W,
2

&

(where ||.||Hs denotes the Hilbert-Schmidt norm) i.e. (*) of Theorem

"T,x" e peto,T1,3_) (P-a.s.) by

assumption and X" and X are §’'-valued (weak) Lz-semimartingales. By

T wum> xT on
n->wm

D(IO,Tlpi_q). Since also (14) is supposed to hold, the assumptions

1.2 is satisfied. Moreqver, X

Theorem I.4, (1), (lla,b), (12) and (13) imply that X’

of Theorem I.2 are satisfied and the conclusion therefore follows

from this theorem.

----------------

................




23

-Next we shall give conditions for the weak convergence of a sequence
W? of §’~valued Wiener processes to another §’-—valued Wiener process
Wy and then employ these together with Theorem I.2 to giving the

'éorresponding weak convergence result for the solutions to the SDE's

driven by W? and W, respectively.

Let, for n € N, m" € 3’ and let B" : Ix§ - R be bilinear symmetric

functionals satisfying (l1). Let Wl = (WZ)t>o denote the §'—va1ued

n

Wiener process with parameters m~ and B, (1) implies that W: € §_q

¥ t > 0, for some q which does not depend on n € N.

1.6. THEOREM

Suppose that, in addition to satisfying (1), B" and m” satisfy

LT Y,

(1) . BM(¢,$) ~——=> Qd,d) WV ée D

) n=>w

(16) m"(¢] ——=> m(¢] WV ¢ €.
n>®

Then, for each T > 0, we have W'T oma> W' on C([0.Tlr§_q)'
n->m

T

where Wi'* = (w:)tﬁLn.Tl and W, is the §’'~—valued Wiener process

introduced on page 6.

PROOF :

By Mitoma, [6] (Theorem 5.3 part 1), it is sufficient to prove that
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f Yt>0 (WT : ne N) is tight on ccto,71,3_) and

VYV 0<t) Ceeety STV §r,r0..,Fy € 9:

. -

wheT N T N
<Wtj (B350 4y = ‘Wtj“’j“j-r

The tightness part is proved in the same way as in Proposition I.O0.

Now, a calculation shows that

X j=1 j=1 k=1
. ~—> . (by (15) and (16))
N N N
exp| i ‘T.t.a.mlw 1 - i Y t.,t a.a, B(J.,¥ ):]

g VARG N5 B 2 L L. 3Kk TR
- =1 j=1 k=1

3

\

o Letting l}n = (]?g)tzo denote the unique solution to the SDE on §’:

d]?: = A'N,at + dw‘t’;l

~3
o>s
]
~3
=
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W

and N} = (Ny)eyq be the §’-valued process introduced on page 16 we

have

. -

Let, in addition to (1), B™ and m® satisfy (15) and (16) of

theorem 1.6, and suppose that I?n and ]?o satisfy

(179 Jrew: supmax(in 12, EIN°I_;} < @ and
n

Np ===> N on 3,

n->

Then, W T > 0 J py € H: ™" == T on ctio,11,3_ ),
n->w T

n,7T n
where N7'" = (Nidegro,T)”

3
]
PROOF :

By (1), (15) and (16) and theorem I.6 W'!T mm=> W' on
' ‘T, n->@
D([O,Tl.Lq) W t > 0 where q = min{p :Lp is Hilbert—-Schmidt}.

Moreover (1) implies (*) of Theorem I.2 and (17) supplies the

remaining condition of Theorem I.2 (recall remark 2).

As indicated at the beginning of this section, Kallianpur and Wolpert
({5)] used Poisson random measures defined via intensity measures on

(mx X', 8(R)x8) where (X .,8) is a suitably chosen measurable space,

rather than by mean/covariance measures defined on (Rx/A\,8(R)X8(A));

i
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A € 8(3’) as we have done it here.

It is therefore natural to address the question of when Kallianpur

-

and Wolpert's framework is contained in the one we have presented

here.

It is proved in [2] (Chapter 1IV) that if H = Lz(x,T) for some -
finite measure space (X,T) where X is a -compact topological
Hausdorff space then it is possible to represent the Kallianpur &
Wolpert models in our framework if elements of § are continuous
functions on X and if, the evaluation functional éx : ¢ > $(x) is

continuous on § for every x € X .
il. IHE WAN § IUCKWELL MODEL

Next, we shall apply our results to giving a rigorous formulation and
investigation of a model recently proposed by Wan & Tuckwell ([9]:

3

l.’
In order to study the behaviour of the difference V(t,x) at time t
between the so—called resting potential and the actual potential at
point x on the surface of an infinitely thin cylinder shaped neuron

which receives synaptic stimuli of the finite spatial extent Gi at

each of N sites‘xi, Wan & Tuckwell investigated the model formally

given by
v ) 2v -\'i awt
— - Y 4 + hi(x:;x,,€;) (£, + —_—)
it ) Lél 1081145 + T
(19)

V(0,x) = 0 V(t,0) = 0 = V(t,b); V t >0,




where

’E}x;xi,ei) - 1(xi (x)

(xi,ei >0 fixed for i = 1,...,N)

t; i =1,...,N are independent standard Wiener processes.

and where W
'(i and/gi represent input current parameters and the neuron is

thought of as the interval (0,b]; for some b > 0.

To see how this model can be given a rigorous representation as a

J’—valued SDE, let H = thlo,b]) with inner product denoted by

<epe>g. Let L denote the operator I - A (/A = Laplace operator in
. one dimension) with Neumann boundary conditions at 0 and b. Then L is
i a densely defined positive definite selfadjoint closed linear

operator on H and admits a CONS (¢j :t j=0,1,2,...) in H consisting

i of eigenvectors of L;

j%rZ

L¢j = \j¢j: j =0,1,2,..., where \j =1 + and

b2
b~1/2 jf § = 0
¢j(X) = \
2 jrx
(=112 cos(—) if § > 1.
b b
Further, A := =L is the generator of a selfadjoint contraction

semigroup (T, : £ > 0} on H whose resolvent R()\) = (\I - A)-l is
Hilbert—-Schmidt on H.




...................

Letting
F:=(beH: |(I- My <o WV renr)
and defining norms [|.|.; r € R on § by y

Hél, == H(x = M 0l d €@
we put §_ equal to the |.|_-completion of §.

Then § = g;L ir and if T denotes the Frechet topology on § generated
by {(l.1, + r @ R} (i.e. the projective limit topology on $}), then
(@,2)c> B c»Q’ (where §’ denotes the strong dual of (3,0)) is a
rigged Hilbert space. Since A = =L, and L is a densely defined
positive selfadjoint closed linear operator on H it is easily seen
that A and (T, : t > 0} satisfy Al of section I.

.‘;
Moreover, (¢j : jedr @, 9 Dom(L) and per construction of P
every element of § is an infinitely differentiable function. Let
N e M fixed, and for each i = 1,...,N let § € §'. Let v ;
i=1,...,N be 6~finite measures on R satisfying

\

J‘ azvi(da) <o Vi,

and let p be the measure on Rx/\, where A = (¥, : i = 1,...,N},

given by




Cam e s un aan e s an

N
= \" é : 8 i i .
7Y ieidix }i where S is the point mass ats

- Define

Qd, 1 = j,x,\ a’néINIPlu(daan); ¢, ¢ 3

N
- ; (o a%;taa) §; 1015, 19)

then Q is a continuous, bilinear symmetric functional on §, so for
meJ’ given, let W = W, be the §’'—valued (actually Q—q valued for

some q e lo) Wiener process with parameters m and Q.

Consider the SDE on §’:

(20) d]?t = A']?tdt + dwt, ]'zo = 0

]
Now, W is a weak §’'-valued continuous Lz—semimartingale, and since A
and (T, : t > 0} satisfy Al there is a unique continuous §’'—valued

solution (from [2], Theorem III.l1.5 and Remark 6) given by
Neld] -’g W [T, _gAdlds + W.(é] V ¢ €@ (with probability one).

Choosingsi = <h(.;%4,€),.>y ¥V i=1,...,N and

N
m = n® = \

fL{(igi; /df = ’R azdi(da),

(20) is the representation of (19) as an SDE on §’. To see that this

is indeed the case, expand




¢ = .\L—o<¢,¢j>n ¢j (converging in (i,t))
J.

~ frecall that ¢j-e ? Viem

Then (writing ]’23 for Qt and wi for W,)
1o.°)

netel = JZ (f5 wlim _gabj1as + WELO41) <bibydy
=0

(converging in I.z H,P,P)).

Moreover, the series
'co

;’ U‘; wf['rt_swj}ds + w;wjljéj(x)

is convergent in Lz(o,r,P) for every x € [0,b] to a limit Vg(t,x)

satisfying
| j

€o1 = P v (t,x)d(xrax  (P-a.s.)
]?t o e '™ °=e

for every ¢ € §. Let us see that EVg(t,x) and VarVg(t,x) actually

agree with the formulae found in (9] by a heuristic argument:

Eve(t’X) = E

gl

-xj (t—=9)
Ws[¢j]ds + wt[d;j]wj(x)

-----




-\;(t=3)
-2 V) J‘; e 3 dws[¢j1¢j(x)

(o]
- vf: e 3 ° me,1dsh; (x)
=0

\y ~1, _ oMt

3 1y (x)

(x)P;(x,;;€,) -\4t
- § 4y L5 L Ui LD A

ﬂ/_O"‘j

which is formula (8) page 279 in Wan & Tuckwell [9]).

xi+€i
xi"e-
1
;; Next, . ‘
ﬁi !
Q0
. Y— t "')\ (t-s) .
[ e AW [ 164 () by (x)

@

) %'i & It e—(\j+\k)(t-s)
(o)

fo i

"

...............................
..........

- *‘ ........
g .r 1P W J‘.\\ ".n\_ﬂ'_k\g\

...............

POROANE LLJ SR 'L'- e N \i‘;.‘;:.LL OO,

1

Here, as in [9),

Q(¢j.¢k)ds¢j(x)¢k(x)

Q( ~ (N A0t
L_o-;ﬁét"—¢j(x)¢k<x)(1 -e K,
3
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N m m - L3
. Z/s? Z Z ¢j(x)¢k(x)¢i(xi.ei)¢k(xi,ei)
1
i=1 =0 k=0 ST
i —(\3+\ )t
(1 — e 37k )

which is formula (10) in [9].

Wan & Tuckwell proceed to compute the limit as ei >0V i=1,...,N
in such a way that ei-(i > a; and ei/si > bi > 0 of Eve(t.x) and
Varve(t,x), and they find that these limits correspond to having

point stimuli (i.e. h(x,xi,ei) replaced by 8 (x)) at each of X3

x5
i = 1,000'“0

This result may be obtained from Theorem I.7 in the following manner:

For each i = 1,...,N takex}f - u. , where pu. a is finite
] 171 Ti i

measure on R with compact support.

Noting that every ¢ € § is a continuous function on [0,b] (recall
that § < Dom(L) and that L is a differential operator) we let € >0

in such a way that eioq = a;. Then

N
lim me[¢1 = lim Zo(id!(.;xi,ei),d»

H

N
— x,+€,
= lim ) I 1771 poax
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N
= Z 2a;¢(x;)
i=1
-
- zaiéxiw]
i=1
and
‘ N
X.+€.
lim Q%(¢,¢) = lim \_/si(J 17 g xrax) 2
; e;>0 e, >0 4] x;—€;
N
x.+€ 2
b = lim Zb"i’ez'z(s i pman? g‘ u; (da)
F ei->01_l xi"'ei R
b N 2
= ) abpixp? g uy (da)
o)
\
.4', N 2
= Y ap2d, 14n? g‘ u; (da)
o) i
Also,

lmgto112 + %14, <

N N
[(Z llh(-=x1r€1)llglvfil)2 + Z,;fuh(.,xi.ei)ﬂfﬂ II¢II§
=] im]

- ‘2-1 2151+ Z e b1 Nl
= =




........

< consTant |42 WV e,

since ei-/i > a; and €; 2> 0; where CONSTANT is independent of &;, so
condition (1) of section 1 is satisfied. Since the initial condition

is zero, theorem I.7 yields .

ion

As ei -> 0 and eio:. -> a; we have

1

€T

I .
n >R~ on ctlo,T], §-q

YvTo>0
T
for some dn > 0, where I? = ”?t’t)O is the solution to (20)

corresponding to

2

Qéd,4) = ) 4 biLdl I u,(da)

N

1

(™
]

and ;

N

migl = 3 2a; & 4] .
1

&

2
Now, Take ‘R 2 ui(da) =1 i=1l,...,N. -Then
BN (4] = 3 \y <Prdy>adyx;) -\it
i=] j-o Xj
and
T a2 &
Varn(¢1 = Z 4bfZ Z rP12g<Pr b b, (x4 (x)
i=] j=0 k=0 )‘j + )‘k
...... . -'_.' L IR -_.‘:_.:, .. .~...;_ el ...'..‘_-‘.‘_':_;‘-_;}_:-_... _.:..:;_.:.._ :.‘ :‘. - . . .:’
R e T e e g

........
........




v'-rrvv‘z"
o LN e N

—(\j+\k)t

(1l — e ).

o 0]

_Since Vg(t,x) = \L Nelésléy0  (in t2(o,P,P))

J=0
we get
N @D
- & . (x;) =\t
I el 3
v - . . -
(22) EVg(t,x) Va2 2314_ N ¢J(x)(1 e )
i=1 j=0 3

and

a o
i/

N

' N~
(23) Varve(t,x) = / 4 VPR
= j=0 k=0 3 k

i

¢j(x)¢k(x).

[

(22) and (23) are the expressions found by Wan & Tuckwell for point

stimuli at xi:i = 1,...,N.

] A , . . . :
In practice, equation (20) is likely to arise as a limit of equations
where the noise is not . Wiener process, but rather a process
generated by a Poisson random measure in the manner considered in

section I. As an illustration, take un to be measures on Rx/\; where

A= {fi :i=1,...,N} of the form

&
n.
WL

vgxé , wWhere
L7178,

[
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for each né€é 8 and i = 1,...,N ~J? is a ¢ —-finite measure on R such

that

néN

Let m" € 3’ converge weakly to mo. Then there is r € M, such that
Im"14112 < X141 Vv new.

Since

1R, 08112 < 2¢ 219012 < 2¢)2 1412 we get
N

Im®14112 + QP (,d) = |m"141|2 + \Lisnaz-v'i'(da)(gi[d;l)z
is

< CONSTANT |62 ¥ n e N; i.e. (1) holds with r, = r.
j
Let x:; n > 1 denote the §’—valued processes constructed from m" and
u® on p.S/6 .-

Letting §n denote the solution to

AY

a§¢ = -L'§] + ax7

n
SQ-O

Theorem I.3 gives the existence of Pp such that




g7 = n%7T on D(r0,71,3_ )
n>® )

provided that

200 um {ja|Nlar =0 Vi=1,...,N
n->w

and

| . 2,n 2 ,

(25) lim avY.;(da) =4 vVi=1,...,N
n>m in i i e

i.e. the previously considered process ]?e can be thought of as the

limit of solutions to SDE's with Poisson generated noise.

Physically, this type of weak convergence models a situation in which
the individual current stimuli of the neuron arrive very densely in
each small time interval so as to create a total contribution to the

electr"}cal potential which behaves like the continuous Wiener process.
On the other hand, if (24) and (25) are replaced by

lim (eiay -1 - iay)~y %(da) = (ei'aY -1 - iay)\lg(da)
n>am ’R i JR i

for all y € R, then theorem I.5 gives

~

g ===> €T on D(10,71,3__ )
n>w Py

€

where xe is the process with mean functional m- constructed from the

Poisson random measure with intensity




This latter convergence can be thought of as modelling a situation in
which the individual stimuli received by the neuron do not tend to

arrive very densely packed in each small time interval, but rather >

tend to arrive clustered at random points of time,
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